Model-driven brain shift compensation

نویسندگان

  • Oskar M. Skrinjar
  • Arya Nabavi
  • James S. Duncan
چکیده

Surgical navigation systems provide the surgeon with a display of preoperative and intraoperative data in the same coordinate system. However, the systems currently in use in neurosurgery are subject to inaccuracy caused by intraoperative brain deformation (brain shift), since they typically assume that the intracranial structures are rigid. Experiments show brain shift of up to 1 cm, making it the dominant error in the system. We propose a biomechanical-model-based approach for brain shift compensation. Two models are presented: a damped spring-mass model and a model based on continuum mechanics. Both models are guided by limited intraoperative (exposed brain) surface data, with the aim to recover the deformation in the full volume. The two models are compared and their advantages and disadvantages discussed. A partial validation using intraoperative MR image sequences indicates that the approach reduces the error caused by brain shift.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sparse intraoperative data-driven biomechanical model to compensate for brain shift during neuronavigation.

BACKGROUND AND PURPOSE Intraoperative brain deformation is an important factor compromising the accuracy of image-guided neurosurgery. The purpose of this study was to elucidate the role of a model-updated image in the compensation of intraoperative brain shift. MATERIALS AND METHODS An FE linear elastic model was built and evaluated in 11 patients with craniotomies. To build this model, we p...

متن کامل

Compensation of brain shift during surgery using non-rigid registration of MR and ultrasound images

Background: Surgery and accurate removal of the brain tumor in the operating room and after opening the scalp is one of the major challenges for neurosurgeons due to the removal of skull pressure and displacement and deformation of the brain tissue. This displacement of the brain changes the location of the tumor relative to the MR image taken preoperatively. Methods: This study, which is done...

متن کامل

A Feature-Driven Active Framework for Ultrasound-Based Brain Shift Compensation

A reliable Ultrasound (US)-to-US registration method to compensate for brain shift would substantially improve Image-Guided Neurological Surgery. Developing such a registration method is very challenging, due to factors such as missing correspondence in images, the complexity of brain pathology and the demand for fast computation. We propose a novel feature-driven active framework. Here, landma...

متن کامل

Retrospective study comparing model-based deformation correction to intraoperative magnetic resonance imaging for image-guided neurosurgery.

Brain shift during tumor resection compromises the spatial validity of registered preoperative imaging data that is critical to image-guided procedures. One current clinical solution to mitigate the effects is to reimage using intraoperative magnetic resonance (iMR) imaging. Although iMR has demonstrated benefits in accounting for preoperative-to-intraoperative tissue changes, its cost and encu...

متن کامل

Cortical Shift Tracking Using a Laser Range Scanner and Deformable Registration Methods

A novel brain shift tracking protocol is introduced in this paper which utilizes laser range scan (LRS) data and 2D deformable image registration. This protocol builds on previous efforts to incorporate intra-operative LRS data into a model-updated image guided surgery paradigm for brain shift compensation. The shift tracking method employs the use of a LRS system capable of capturing textures ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image analysis

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 2002